A Genetic Analysis of Chloroplast Division and Expansion in Arabidopsis thaliana.
نویسندگان
چکیده
A nuclear recessive mutant of Arabidopsis thaliana, arc5, has been isolated in which there is no significant increase in chloroplast number during leaf mesophyll cell expansion and in which there are only 13 chloroplasts per mesophyll cell compared with 121 in wild-type cells. Mature arc5 chloroplasts in fully expanded mesophyll cells are 6-fold larger than in wild-type cells. A large proportion of arc5 chloroplasts also show some degree of central constriction, suggesting that the mutation has prevented the completion of the chloroplast division process. To examine the interaction of arc loci, a double mutant was constructed between arc1, a mutant possessing many small chloroplasts, and arc5. A second double mutant was also constructed between arc3, a previously discovered mutant also possessing few large chloroplasts per cell, and arc1. Analysis of these double mutants shows that chloroplast number per mesophyll cell is greater when arc5 and arc3 mutations are expressed in the arc1 background than when expressed alone. The cell-specific nature of arc mutants was also analyzed. The phenotypic traits characteristic of arc3 and arc5 are a reduction in chloroplast number and an increase in chloroplast size in mesophyll cells: these changes are also observed in reduced form in the epidermal and guard cell chloroplasts of arc3 and arc5 plants. Analysis of parenchyma sheath cell chloroplasts suggests that in leaves of arc1 plants the normal developmental distinction between mesophyll and parenchyma sheath chloroplasts is perturbed. The relevance of these findings to the analysis of the control of chloroplast division in mesophyll cells is discussed.
منابع مشابه
Differential Expression of Arabidopsis thaliana Acid Phosphatases in Response to Abiotic Stresses
The objective of this research is to identify Arabidopsis thaliana genes encoding acid phosphatases induced by phosphate starvation. Multiple alignments of eukaryotic acid phosphatase amino acid sequences led to the classification of these proteins into four groups including purple acid phosphatases (PAPs). Specific primers were degenerated and designed based on conserved sequences of PAPs isol...
متن کاملA Genetic Analysis of Chloroplast Division and Expansion in A rabidopsis thaliana ' Kevin
A nuclear recessive mutant of Arabidopsis thaliana, arc5, has been isolated in which there is no significant increase in chloroplast number during leaf mesophyll cell expansion and in which there are only 13 chloroplasts per mesophyll cell compared with 121 in wild-type cells. Mature arc5 chloroplasts in fully expanded mesophyll cells are 6-fold larger than in wild-type cells. A large proportio...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملMolecular genetic control of leaf lifespan in plants - A review
Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 104 1 شماره
صفحات -
تاریخ انتشار 1994